385 research outputs found

    Modelling the Effects of Natural Antimicrobials as Food Preservatives

    Get PDF
    A predictive food microbiological model is a mathematical representation of mechanisms that describes the growth, survival, inactivation or biochemical process of an organism and are used in the food industry to predict food pathogen growth and to help in the evaluation of food safety. Furthermore, it reduces the number of expensive and time-consuming experiments; however, adequate statistical analysis is a crucial step during all phases of model development and validation. Therefore, the present chapter is focused on the basic concept of mathematical modelling which can be applied to estimate the effects of natural antimicrobials as food preservatives. Initial section discusses about the importance of modelling in food preservation, brief introduction to types of modelling, model development and validation and the final section includesreviewof recent research in natural antimicrobials modelling

    Non-Negative Matrix Factorization Based Algorithms to Cluster Frequency Basis Functions for Monaural Sound Source Separation.

    Get PDF
    Monophonic sound source separation (SSS) refers to a process that separates out audio signals produced from the individual sound sources in a given acoustic mixture, when the mixture signal is recorded using one microphone or is directly recorded onto one reproduction channel. Many audio applications such as pitch modification and automatic music transcription would benefit from the availability of segregated sound sources from the mixture of audio signals for further processing. Recently, Non-negative matrix factorization (NMF) has found application in monaural audio source separation due to its ability to factorize audio spectrograms into additive part-based basis functions, where the parts typically correspond to individual notes or chords in music. An advantage of NMF is that there can be a single basis function for each note played by a given instrument, thereby capturing changes in timbre with pitch for each instrument or source. However, these basis functions need to be clustered to their respective sources for the reconstruction of the individual source signals. Many clustering methods have been proposed to map the separated signals into sources with considerable success. Recently, to avoid the need of clustering, Shifted NMF (SNMF) was proposed, which assumes that the timbre of a note is constant for all the pitches produced by an instrument. SNMF has two drawbacks. Firstly, the assumption that the timbre of the notes played by an instrument remains constant, is not true in general. Secondly, the SNMF method uses the Constant Q transform (CQT) and the lack of a true inverse of the CQT results in compromising on separation quality of the reconstructed signal. The principal aim of this thesis is to attempt to solve the problem of clustering NMF basis functions. Our first major contribution is the use of SNMF as a method of clustering the basis functions obtained via standard NMF. The proposed SNMF clustering method aims to cluster the frequency basis functions obtained via standard NMF to their respective sources by making use of shift invariance in a log-frequency domain. Further, a minor contribution is made by improving the separation performance of the standard SNMF algorithm (here used directly to separate sources) obtained through the use of an improved inverse CQT. Here, the standard SNMF algorithm finds shift-invariance in a CQ spectrogram, that contain the frequency basis functions, obtained directly from the spectrogram of the audio mixture. Our next contribution is an improvement in the SNMF clustering algorithm through the incorporation of the CQT matrix inside the SNMF model in order to avoid the need of an inverse CQT to reconstruct the clustered NMF basis unctions. Another major contribution deals with the incorporation of a constraint called group sparsity (GS) into the SNMF clustering algorithm at two stages to improve clustering. The effect of the GS is evaluated on various SNMF clustering algorithms proposed in this thesis. Finally, we have introduced a new family of masks to reconstruct the original signal from the clustered basis functions and compared their performance to the generalized Wiener filter masks using three different factorisation-based separation algorithms. We show that better separation performance can be achieved by using the proposed family of masks

    Emerging technologies for the production of nanocellulose from lignocellulosic biomass

    Get PDF
    Nanocellulose is a unique and promising natural nanomaterial and has gained significant attention due to its applications in several important areas. Thus, researchers are continuously looking for the most efficient, sustainable, economically viable, and environmentally friendly production technologies to fulfil its growing demand. Conventional production technologies, which include various physical, chemical, and physicochemical methods, are currently inadequate for this purpose and have several limitations such as long processing time, high energy consumption, low recovery of nanocellulose, and many others. To overcome these shortcomings, scientists have investigated the prospect of utilizing emerging processing technologies such as microwave irradiation, deep eutectic solvent, enzymatic processing, cold plasma, electron beam irradiation, and pulsed electric field in nanocellulose preparation. In general, studies have shown that the application of emerging technologies enhances the extraction yield and properties of nanocellulose. This article presents a review of the most recent works reported on the application of emerging technologies in nanocellulose production

    Salmonella, Food Safety and Food Handling Practices

    Get PDF
    : Salmonellosis is the second most reported gastrointestinal disorder in the EU resulting from the consumption of Salmonella-contaminated foods. Symptoms include gastroenteritis, abdominal cramps, bloody diarrhoea, fever, myalgia, headache, nausea and vomiting. In 2018, Salmonella accounted for more than half of the numbers of foodborne outbreak illnesses reported in the EU. Salmonella contamination is mostly associated with produce such as poultry, cattle and their feeds but other products such as dried foods, infant formula, fruit and vegetable products and pets have become important. Efforts aimed at controlling Salmonella are being made. For example, legislation and measures put in place reduced the number of hospitalizations between 2014 and 2015. However, the number of hospitalizations started to increase in 2016. This calls for more stringent controls at the level of government and the private sector. Food handlers of “meat processing” and “Ready to Eat” foods play a crucial role in the spread of Salmonella. This review presents an updated overview of the global epidemiology, the relevance of official control, the disease associated with food handlers and the importance of food safety concerning salmonellosis

    Parsec: a state channel for the Internet of Value

    Get PDF
    We propose Parsec, a web-scale State channel for the Internet of Value to exterminate the consensus bottleneck in Blockchain by leveraging a network of state channels which enable to robustly transfer value off-chain. It acts as an infrastructure layer developed on top of Ethereum Blockchain, as a network protocol which allows coherent routing and interlocking channel transfers for trade-off between parties. A web-scale solution for state channels is implemented to enable a layer of value transfer to the internet. Existing network protocol on State Channels include Raiden for Ethereum and Lightning Network for Bitcoin. However, we intend to leverage existing web-scale technologies used by large Internet companies such as Uber, LinkedIn or Netflix. We use Apache Kafka to scale the global payment operation to trillions of operations per day enabling near-instant, low-fee, scalable, and privacy-sustainable payments. Our architecture follows Event Sourcing pattern which solves current issues of payment solutions such as scaling, transfer, interoperability, low-fees, micropayments and to name a few. To the best of knowledge, our proposed model achieve better performance than state-of-the-art lightning network on the Ethereum based (fork) cryptocoins

    Heat treatment of S.G cast iron and its effects

    Get PDF
    S.G Cast iron is defined as a high carbon containing, iron based alloy in which the graphite is present in compact, spherical shapes rather than in the shape of flakes, the latter being typical of gray cast iron . As nodular or spheroidal graphite cast iron, sometimes referred to as ductile iron,constitutes a family of cast irons in which the graphite is present in a nodular or spheroidal form.The graphite nodules are small and constitute only small areas of weakness in a steel-like matrix. Because of this the mechanical properties of ductile irons related directly to the strength and ductility of the matrix present—as is the case of steels.One reason for the phenomenal growth in the use of Ductile Iron castings is the high ratio of performance to cost that they offer the designer and end user. This high value results from many factors, one of which is the control of microstructure and properties that can be achieved in the ascast condition, enabling a high percentage of ferritic and pearlitic structure.Heat treatment is a valuable and versatile tool for extending both the consistency and range of properties of Ductile Iron castings beyond the limits of those produced in the as-cast condition. Thus, to fully utilize the potential of Ductile Iron castings, the designer should be aware of the wide range of heat treatments available for Ductile Iron, and its response to these heat treatments.The most important heat treatments and their purposes are:Stress relieving - a low-temperature treatment, to reduce or relieve internal stresses remaining after casting Annealing - to improve ductility and toughness, to reduce hardness and to remove carbides Normalizing - to improve strength with some ductility Hardening and tempering - to increase hardness or to give improved strength and higher proof stress ratio Austempering - to yield bainitic structures of high strength, with significant ductility and good wear resistance Surface hardening - by induction, flame,or laser to produce a local wearresistant hard surface1 Although Ductile Iron and steel are superficially similar metallurgically, the high carbon and silicon levels in Ductile Iron result in important differences in their response to heat treatment. The higher carbon levels in Ductile Iron increase hardenability, permitting heavier sections to be heat treated with lower requirements for expensive alloying or severe quenching media.These higher carbon levels can also cause quench cracking due to the formation of higher carbon martensite,and/or the retention of metastable austenite. These undesirable phenomena make the control of composition, austenitizing temperature and quenching conditions more critical in Ductile Iron. Silicon also exerts a strong influence on the response of Ductile Iron to heat treatment. The higher the silicon content, the lower the solubility of carbon in austenite and the more readily carbon is precipitated as graphite during slow cooling to produce a ferritic matrix. Although remaining unchanged in shape, the graphite spheroids in Ductile Iron play a critical role in heat treatment, acting as both a source and sink for carbon. When heated into the austenite temperature range, carbon readily diffuses from the spheroids to saturate the austenite matrix.On slow cooling the carbon returns to the graphite "sinks",reducing the carbon content of the austenite. This availability of excess carbon and the ability to transfer it between the matrix and the nodules makes Ductile Iron easier to heat treat and increases the range of properties that can be obtained by heat treatment.Austempered Ductile Irons (ADI) are the most recently developed materials of the DI family. By adapting the austempering treatment initially introduced for steels to DI, it has been shown that the resulting metallurgical structures provide properties that favorably compare to those of steel while taking advantage of a near-net-shape manufacturing process

    Heat Treatment of S.G Cast Iron

    Get PDF
    S.G Cast iron is defined as a high carbon containing, iron based alloy in which the graphite is present in compact, spherical shapes rather than in the shape of flakes, the latter being typical of gray cast iron . As nodular or spheroidal graphite cast iron, sometimes referred to as ductile iron, constitutes a family of cast irons in which the graphite is present in a nodular or spheroidal form. The graphite nodules are small and constitute only small areas of weakness in a steel-like matrix. Because of this the mechanical properties of ductile irons related directly to the strength and ductility of the matrix present—as is the case of steels. One reason for the phenomenal growth in the use of Ductile Iron castings is the high ratio of performance to cost that they offer the designer and end user. This high value results from many factors, one of which is the control of microstructure and properties that can be achieved in the ascast condition, enabling a high percentage of ferritic and pearlitic structure

    Green Fractionation of 2G and 3G Feedstocks for Ethanol Production: Advances, Incentives and Barriers

    Get PDF
    Efficient release of fermentable sugars from the complex biomass structure such as second-generation or third-generation feedstocks by an appropriate enzymatic hydrolysis needs a prior biomass fractionation. This process facilitates the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. This review focused on ‘green fractionation’ of biomass by applying the principles of green chemistry for bioethanol production. Besides, the recent technological achievements in applying these principles for the fractionation have been discussed. For green fractionation, energy delivery systems are referred to as microwave and ultrasound. Besides, green cellulose solvents, biomass-derived solvents, and supercritical carbon dioxide play an important role in green biomass fractionations. Furthermore, ball milling and biological treatment are significantly considered in this regard. These novel technologies are superior processes than conventional fractionation techniques in terms of energy and mostly environmental point of view

    Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review

    Get PDF
    Enzymes are of great importance in the industry due to their substrate and product specificity, moderate reaction conditions, minimal by-product formation and high yield. They are important ingredients in several products and production processes. Up to 30% of the total production cost of enzymes is attributed to the raw materials costs. The food industry expels copious amounts of processing waste annually, which is mostlylignocellulosicin nature. Upon proper treatment,lignocellulosecan replace conventional carbon sources in media preparations for industrial microbial processes, such as enzyme production. However, wild strains of microorganisms that produce industrially important enzymes show low yield and cannot thrive on artificial substrates. The application of recombinant DNA technology and metabolic engineering has enabled researchers to develop superior strains that can not only withstand harsh environmental conditions within a bioreactor but also ensure timely delivery of optimal results. This article gives an overview of the current complications encountered in enzyme production and how accumulating food processing waste can emerge as an environment-friendly and economically feasible solution for a choice of raw material. It also substantiates the latest techniques that have emerged in enzyme purification and recovery over the past four years
    corecore